РАСЧЕТ ФАЗНЫХ И ЛИНЕЙНЫХ НАПРЯЖЕНИЙ И ТОКОВ, МОЩНОСТЕЙ В ТРЕХФАЗНЫХ ЦЕПЯХ

1. Соединение по схеме «звезда»

1.1. Три одинаковые группы накаливания, соединенные по схеме «звезда», включены в трехфазную четырехпроводную сеть с действующим значением линейного напряжения U_л = 380В. Определить полную мощность, потребляемую нагрузкой, если линейный ток Iл = 16,5A.

Omвет:S=

1.2. Потребитель, соединенный схеме «звезда» (нагрузка равномерная), включен в трехфазную сеть переменного тока с действующим значением линейного напряжения Uл=380 В. Коэффициент мощности нагрузки $\cos \varphi = 0.5$, ток в фазе I_{ϕ} =22 А. Определить полную и активную мощности нагрузки.

Ответ:Р= *S*=

1.3. В трехфазную сеть с линейным напряжением $U_{\rm Л} = 220~{\rm B}$ включены три одинаковых приемника энергии, соединенные звездой. Сопротивления приемников R=6 и $X_L=8$ Ом. Определить фазные и линейные токи, активную мощность трехфазной нагрузки.

Oтвет:Iф=Iл=S=

1.4. В трехфазную сеть с линейным напряжением U_П=220 В включены три одинаковых приемника энергии, соединенные звездой. Сопротивления приемников R=6 и X_L=8 Ом. Определить фазные и линейные токи, полную мощность трехфазной нагрузки.

Oтвет: Iф= Iл= P=

1.5. В трехфазную четырех проводную сеть включили звездой несимметричную нагрузку: в фазу А – индуктивный элемент с индуктивностью L_A, в фазу В - резистор с сопротивлением R_B, и емкостный элемент с емкостью Св, в фазу C – резистор с сопротивлением $R_{\rm C}$. Линейное напряжением сети U_{ном}. Частота сети 50Гц. Определить фазные токи ІА, ІВ, ІС, активную мощность цепи Р, реактивную мощность Q и полную мощность S, начертить схему цепи

R _B ,	R _C ,	L _A ,	С _В ,	Uном,
	Ом	мГн	мкФ	В
25	5	10	100	380

Omeem: $I_A=$, $I_B=$, $I_C=P=S=Q=$

Электрические цепи, которые состоят из совокупности переменных ЭДС одной частоты и сдвинутых по фазе друг относительно друга на треть периода называют трехфазной системой переменного тока. Однофазная цепь, входящая в систему данной многофазной цепи, называется фазой.

В трехфазных системах обмотки генератора и электроприемника соединяют по схемам «звезда» или «треугольник».

Если нагрузки (приемники) соединены в трехфазную цепь по схеме «звезда», то к сопротивлениям нагрузки приложены фазные напряжения. Линейные токи равны фазным и определяются по закону

$$I_A = \frac{U_A}{R_A}; I_B = \frac{U_B}{R_B}; I_C = \frac{U_C}{R_C},$$

а ток в нейтрали равен векторной сумме этих токов:

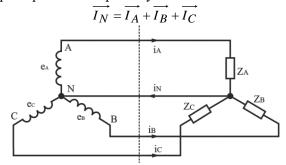


Рисунок 1 - Соединение генератора и приемника «звездой»

При симметричных напряжениях U_A , U_B , U_C и одинаковых сопротивлениях $R_A = R_B = R_C = R$ токи I_A , I_B , I_C также симметричны и их векторная сумма (I_N) равна нулю. Тогда:

$$I_{\pi} = I_{\phi} = \frac{U_{\phi}}{R}; I_{N} = 0,$$

а напряжение

$$U_{\pi} = \sqrt{3}U_{ab}$$

Мощность трёхфазной нагрузки складывается из мощностей фаз:

$$\sum P = P_A + P_B + P_C$$

Когда нагрузка симметричная и чисто резистивная, имеем

$$\sum P = P_A + P_B + P_C = 3P_{\phi} = 3U_{\phi}I_{\phi}$$

При смешанной (активно-индуктивной или активно-емкостной) нагрузке:

активная мощность

$$\sum P = 3U_{\phi}I_{\phi}\cos\varphi = \sqrt{3}U_{\pi}I_{\pi}\cos\varphi$$

реактивная мощность
$$\sum Q = 3U_{\phi}I_{\phi}\sin\phi = \sqrt{3}U_{\pi}I_{\pi}\sin\phi$$
 полная мощность

полная мощность

$$S = \sqrt{P^2 + Q^2} = 3U_{\phi}I_{\phi} = \sqrt{3}U_{\pi}I_{\pi}$$

2. Соединение по схеме «треугольник»

2.1. Трехфазный асинхронный двигатель мощностью 7 кВт, напряжением 127 В фазы (обмотки двигателя соединены треугольником) работает с коэффициентом мощности соѕф=0,87. Найти ток в линейных проводах, с помощью которых двигатель присоединен к сети, если его к.п.д. равен 87%.

Ответ: Іл=

2.2. К трехфазной сети с $U_{\rm Л}=660~{\rm B}$ подключены три одинаковых приемника энергии, соединенные треугольником и имеющие сопротивления $R=32~{\rm u}~X_{\rm L}=24~{\rm Om}$. Определить фазные и линейные токи.

$Om в em: I \phi = I л =$

2.3. В трехфазную сеть с $U_{\rm Л}$ =380В включен по схеме треугольник асинхронный двигатель, имеющий Z_{Φ} =19 Ом, соз Φ =0,8. Найти линейные токи и активную мощность, потребляемую двигателем из сети.

Ответ: Іл=Р=

2.4. В трехфазной сети с $U_{\rm Л}=3000~{\rm B}$ подключены три одинаковых приемника, сопротивления которых $R=120~{\rm u}~{\rm X}_{\rm L}=160~{\rm Om}$. Найти фазные и линейные токи и мощности, если приемники соединены треугольником.

Ответ: Іф=Іл=Р=

2.5. В трехфазную сеть включили треугольником несимметричную нагрузку. В фазу AB — емкостный элемент C_{AB} , в фазу BC — индуктивный элемент с активным сопротивлением R_{BC} и индуктивностью L_{BC} , в фазу C — резистор с сопротивлением R_{CA} . Линейное напряжением сети U_H . Частота сети 50Γ ц. Определить фазные токи I_{AB} , I_{BC} , I_{CA} , активную мощность цепи P, реактивную мощность Q и полную мощность трехфазной цепи S, начертить схему цепи.

R _{BC} ,	R _{CA} ,	L _{BC} ,	C _{AB} ,	Ином,
Ом	Ом	мГн	мкФ	В
4	10	10	320	220

Omeem: I_A=, I_B=, I_C=P=S=Q=

Если нагрузки (приемники) соединены в трехфазную цепь по схеме **«треугольник»**, нагрузка R_{AB} , R_{BC} и R_{CA} каждой фазы включается на полное линейное напряжение, которое равно фазному:

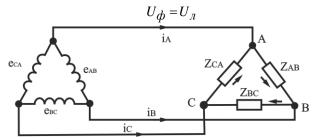


Рисунок 2 – Соединение генератора и приемника «треугольником»

Фазные токи I_{AB} , I_{BC} и I_{CA} определяются по закону Ома. Линейные токи определяются по первому закону Кирхгофа:

$$\overrightarrow{I_A} = \overrightarrow{I_{AB}} - \overrightarrow{I_{CA}}; \ \overrightarrow{I_B} = \overrightarrow{I_{BC}} - \overrightarrow{I_{AB}}; \ \overrightarrow{I_C} = \overrightarrow{I_{CA}} - \overrightarrow{I_{BC}}$$

При симметричных напряжениях UAB, UBC, UCA и одинаковых нагрузках фаз $R_{AB} = R_{BC} = R_{CA} = R$ токи также симметричны:

$$I_{\pi} = \sqrt{3}I_{\phi} = \sqrt{3}\frac{U_{\phi}}{R} .$$

Мощность, потребляемая трехфазной нагрузкой при ее соединении в «треугольник», складывается из мощностей фаз

$$\sum P = P_{AB} + P_{BC} + P_{CA}$$

При симметричной или чисто активной нагрузке

$$\sum P = 3P_{\phi} = 3U_{\phi}I_{\phi}$$

При смешанной (активно-индуктивной или активно-емкостной) нагрузке:

активная мощность

$$\sum P = 3U_{\phi}I_{\phi}\cos\varphi = \sqrt{3}U_{\pi}I_{\pi}\cos\varphi$$

реактивная мощность

$$\sum Q = 3U_{\phi}I_{\phi}\sin\varphi = \sqrt{3}U_{\pi}I_{\pi}\sin\varphi$$

полная мощность

$$S = \sqrt{P^2 + Q^2} = 3U_{\phi}I_{\phi} = \sqrt{3}U_{\pi}I_{\pi}$$